Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 33(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37782833

RESUMO

To mitigate climate change, the share of renewable energies in power production needs to be increased. Renewables introduce new challenges to power grids regarding the dynamic stability due to decentralization, reduced inertia, and volatility in production. Since dynamic stability simulations are intractable and exceedingly expensive for large grids, graph neural networks (GNNs) are a promising method to reduce the computational effort of analyzing the dynamic stability of power grids. As a testbed for GNN models, we generate new, large datasets of dynamic stability of synthetic power grids and provide them as an open-source resource to the research community. We find that GNNs are surprisingly effective at predicting the highly non-linear targets from topological information only. For the first time, performance that is suitable for practical use cases is achieved. Furthermore, we demonstrate the ability of these models to accurately identify particular vulnerable nodes in power grids, so-called troublemakers. Last, we find that GNNs trained on small grids generate accurate predictions on a large synthetic model of the Texan power grid, which illustrates the potential for real-world applications.

2.
Chaos ; 33(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549123

RESUMO

We present a modular framework for generating synthetic power grids that consider the heterogeneity of real power grid dynamics but remain simple and tractable. This enables the generation of large sets of synthetic grids for a wide range of applications. For the first time, our synthetic model also includes the major drivers of fluctuations on short-time scales and a set of validators that ensure the resulting system dynamics are plausible. The synthetic grids generated are robust and show good synchronization under all evaluated scenarios, as should be expected for realistic power grids. A software package that includes an efficient Julia implementation of the framework is released as a companion to the paper.

3.
Chaos ; 32(11): 113114, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36456335

RESUMO

We study the spreading of renewable power fluctuations through grids with Ohmic losses on the lines. By formulating a network-adapted linear response theory, we find that vulnerability patterns are linked to the left Laplacian eigenvectors of the overdamped eigenmodes. We show that for tree-like networks, fluctuations are amplified in the opposite direction of the power flow. This novel mechanism explains vulnerability patterns that were observed in previous numerical simulations of renewable microgrids. While exact mathematical derivations are only possible for tree-like networks with a homogeneous response, we show that the mechanisms discovered also explain vulnerability patterns in realistic heterogeneous meshed grids by studying the IEEE RTS-1996 test system.

4.
Entropy (Basel) ; 24(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421545

RESUMO

In recurrence analysis, the τ-recurrence rate encodes the periods of the cycles of the underlying high-dimensional time series. It, thus, plays a similar role to the autocorrelation for scalar time-series in encoding temporal correlations. However, its Fourier decomposition does not have a clean interpretation. Thus, there is no satisfactory analogue to the power spectrum in recurrence analysis. We introduce a novel method to decompose the τ-recurrence rate using an over-complete basis of Dirac combs together with sparsity regularization. We show that this decomposition, the inter-spike spectrum, naturally provides an analogue to the power spectrum for recurrence analysis in the sense that it reveals the dominant periodicities of the underlying time series. We show that the inter-spike spectrum correctly identifies patterns and transitions in the underlying system in a wide variety of examples and is robust to measurement noise.

5.
Eur Phys J Spec Top ; 230(16-17): 3273-3280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221247

RESUMO

The epidemic threshold of a social system is the ratio of infection and recovery rate above which a disease spreading in it becomes an epidemic. In the absence of pharmaceutical interventions (i.e. vaccines), the only way to control a given disease is to move this threshold by non-pharmaceutical interventions like social distancing, past the epidemic threshold corresponding to the disease, thereby tipping the system from epidemic into a non-epidemic regime. Modeling the disease as a spreading process on a social graph, social distancing can be modeled by removing some of the graphs links. It has been conjectured that the largest eigenvalue of the adjacency matrix of the resulting graph corresponds to the systems epidemic threshold. Here we use a Markov chain Monte Carlo (MCMC) method to study those link removals that do well at reducing the largest eigenvalue of the adjacency matrix. The MCMC method generates samples from the relative canonical network ensemble with a defined expectation value of λ max . We call this the "well-controlling network ensemble" (WCNE) and compare its structure to randomly thinned networks with the same link density. We observe that networks in the WCNE tend to be more homogeneous in the degree distribution and use this insight to define two ad-hoc removal strategies, which also substantially reduce the largest eigenvalue. A targeted removal of 80% of links can be as effective as a random removal of 90%, leaving individuals with twice as many contacts. Finally, by simulating epidemic spreading via either an SIS or an SIR model on network ensembles created with different link removal strategies (random, WCNE, or degree-homogenizing), we show that tipping from an epidemic to a non-epidemic state happens at a larger critical ratio between infection rate and recovery rate for WCNE and degree-homogenized networks than for those obtained by random removals.

6.
Chaos ; 31(6): 063133, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34241293

RESUMO

NetworkDynamics.jl is an easy-to-use and computationally efficient package for simulating heterogeneous dynamical systems on complex networks, written in Julia, a high-level, high-performance, dynamic programming language. By combining state-of-the-art solver algorithms from DifferentialEquations.jl with efficient data structures, NetworkDynamics.jl achieves top performance while supporting advanced features such as events, algebraic constraints, time delays, noise terms, and automatic differentiation.

8.
Chaos ; 30(6): 063140, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32611078
9.
Chaos ; 30(3): 033138, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32237782

RESUMO

Power systems are subject to fundamental changes due to the increasing infeed of decentralized renewable energy sources and storage. The decentralized nature of the new actors in the system requires new concepts for structuring the power grid and achieving a wide range of control tasks ranging from seconds to days. Here, we introduce a multiplex dynamical network model covering all control timescales. Crucially, we combine a decentralized, self-organized low-level control and a smart grid layer of devices that can aggregate information from remote sources. The safety-critical task of frequency control is performed by the former and the economic objective of demand matching dispatch by the latter. Having both aspects present in the same model allows us to study the interaction between the layers. Remarkably, we find that adding communication in the form of aggregation does not improve the performance in the cases considered. Instead, the self-organized state of the system already contains the information required to learn the demand structure in the entire grid. The model introduced here is highly flexible and can accommodate a wide range of scenarios relevant to future power grids. We expect that it is especially useful in the context of low-energy microgrids with distributed generation.

10.
Nat Commun ; 11(1): 592, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001705

RESUMO

The stability of synchronised networked systems is a multi-faceted challenge for many natural and technological fields, from cardiac and neuronal tissue pacemakers to power grids. For these, the ongoing transition to distributed renewable energy sources leads to a proliferation of dynamical actors. The desynchronisation of a few or even one of those would likely result in a substantial blackout. Thus the dynamical stability of the synchronous state has become a leading topic in power grid research. Here we uncover that, when taking into account physical losses in the network, the back-reaction of the network induces new exotic solitary states in the individual actors and the stability characteristics of the synchronous state are dramatically altered. These effects will have to be explicitly taken into account in the design of future power grids. We expect the results presented here to transfer to other systems of coupled heterogeneous Newtonian oscillators.

11.
Phys Rev E ; 100(2-1): 022124, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574685

RESUMO

We study two generalizations of the basin of attraction of a stable state, to the case of stochastic dynamics, arbitrary regions, and finite-time horizons. This is done by introducing generalized committor functions and studying soujourn times. We show that the volume of the generalized basin, the basin stability, can be efficiently estimated using Monte Carlo-like techniques, making this concept amenable to the study of high-dimension stochastic systems. Finally, we illustrate in a set of examples that stochastic basins efficiently capture the realm of attraction of metastable sets, which parts of phase space go into long transients in deterministic systems, that they allow us to deal with numerical noise, and can detect the collapse of metastability in high-dimensional systems. We discuss two far-reaching generalizations of the basin of attraction of an attractor. The basin of attraction of an attractor are those states that eventually will get to the attractor. In a generic stochastic system, all regions will be left again; no attraction is permanent. To obtain the equivalent of the basin of attraction of a region we need to generalize the notion to cover finite-time horizons and finite regions. We do so by considering soujourn times, the fraction of time that a trajectory spends in a set, and by generalizing committor functions which arise in the study of hitting probabilities. In a simplified setting we show that these two notions reduce to the normal notions of the basin of attraction in the appropriate limits. We also show that the volume of these stochastic basins can be efficiently estimated for high-dimensional systems at computational cost comparable to that for deterministic systems. To fully illustrate the properties captured by the stochastic basins, we show a set of examples ranging from simple conceptual models to high-dimensional inhomogeneous oscillator chains. These show that stochastic basins efficiently capture metastable attraction, the presence of long transients, that they allow us to deal with numerical and approximation noise, and can detect the collapse of metastability with increasing noise in high-dimensional systems.

12.
Chaos ; 28(4): 043102, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31906663

RESUMO

We study the stability of deterministic systems, given sequences of large, jump-like perturbations. Our main result is the derivation of a lower bound for the probability of the system to remain in the basin, given that perturbations are rare enough. This bound is efficient to evaluate numerically. To quantify rare enough, we define the notion of the independence time of such a system. This is the time after which a perturbed state has probably returned close to the attractor, meaning that subsequent perturbations can be considered separately. The effect of jump-like perturbations that occur at least the independence time apart is thus well described by a fixed probability to exit the basin at each jump, allowing us to obtain the bound. To determine the independence time, we introduce the concept of finite-time basin stability, which corresponds to the probability that a perturbed trajectory returns to an attractor within a given time. The independence time can then be determined as the time scale at which the finite-time basin stability reaches its asymptotic value. Besides that, finite-time basin stability is a novel probabilistic stability measure on its own, with potential broad applications in complex systems.

13.
Chaos ; 27(12): 127003, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289040

RESUMO

90% of all Renewable Energy Power in Germany is installed in tree-like distribution grids. Intermittent power fluctuations from such sources introduce new dynamics into the lower grid layers. At the same time, distributed resources will have to contribute to stabilize the grid against these fluctuations in the future. In this paper, we model a system of distributed resources as oscillators on a tree-like, lossy power grid and its ability to withstand desynchronization from localized intermittent renewable infeed. We find a remarkable interplay of the network structure and the position of the node at which the fluctuations are fed in. An important precondition for our findings is the presence of losses in distribution grids. Then, the most network central node splits the network into branches with different influence on network stability. Troublemakers, i.e., nodes at which fluctuations are especially exciting the grid, tend to be downstream branches with high net power outflow. For low coupling strength, we also find branches of nodes vulnerable to fluctuations anywhere in the network. These network regions can be predicted at high confidence using an eigenvector based network measure taking the turbulent nature of perturbations into account. While we focus here on tree-like networks, the observed effects also appear, albeit less pronounced, for weakly meshed grids. On the other hand, the observed effects disappear for lossless power grids often studied in the complex system literature.

14.
Sci Rep ; 6: 29654, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27405955

RESUMO

The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...